Get your Epi-Ready Silicon Wafers Today

university wafer substrates

PIN Epi Silicon Wafers

An electrical engineering graduate student requested a quote for the following:

Do you have anything like a PIN Epi Silicon wafer available? 

Reference #274681 for specs and pricing.

Get Your Epi-Silicon Wafer Quote FAST! Or, Buy Online and Start Researching Today!

Company:

Epi Ready Silicon Wafers

We offer many epi-ready silicon wafers for various research applications and projects. These substrates are made from various materials, such as boron, silicon, gallium arsenide, and gallium nitride.
We also provide structural defect characterization data on bare epi-ready wafers based on ELBA used for FTIR thickness uniformity mapping and AFM surface morphology.

What Are Epi-Ready Wafers Used For?

Finished epitaxial silicon wafers are used to construct semiconductor chips found in most technology and gadgets worldwide. The n-type and p-type silicon materials that make up these wafers provide the wireless, photonic, and electronic performance required for these devices and systems.

When a new layer of epitaxial silicon is constructed on a recycled substrate, the result is a repurposed wafer with built-in technical potential to yield results far superior to what would be possible on an unrecycled virgin wafer. The repurposed wafer also benefits from the fact that it can be fabricated at significantly lower than the cost of producing a new, raw substrate wafer.

The process starts with polishing a single-crystal silicon wafer, then exposing it to low-temperature conditions. This treatment helps remove the oxide and ensures that the surface is clean and ready for a thin film of dopant to be applied. This dopant will establish the p-type or n-type silicon properties for the new epitaxial layer to be grown on the wafer.
The dopant can be either boron or phosphorus, which are the most commonly employed dopants in the production of silicon wafers. Once the substrate is prepared for epitaxial growth, the process can be initiated using various methods. These include chemical vapor deposition (CVD), liquid phase epitaxy, and molecular beam epitaxy.
The Most Common Applications and Research

Epitaxial wafers are used in a wide range of applications and research areas. The most popular applications include various semiconductor devices, including highly integrated semiconductor elements (ICs), transistors, diodes, and photovoltaics. They are also commonly utilized as the substrate for lithography, lasers, and light-emitting diodes (LED). As the demand for LED lights continues to grow, so does the need for high-quality, wide-bandgap silicon carbide (SiC) substrates.
SiC substrates offer a higher operating temperature range than other substrate materials and are well-suited to short-wavelength optoelectronic devices, high-temperature electronics, and power/high-frequency electronic devices. They also have a much wider bandgap than GaAs and Si, which allows them to be used in power electronics where current density is important.

The most common method for preparing SiC wafers is through the chemical vapor deposition of an EPI layer. The EPI process involves using a quartz reaction chamber and a silicon susceptor to support the wafers and create a uniform environment for epitaxial growth. This process can be achieved using various epitaxial growth techniques, including chemical vapor deposition CVD, liquid phase epitaxy LPE, and molecular beam epitaxy (MBE).

Another popular application for epi-ready silicon wafers is the foundation for photovoltaic device production. The high quality of the epi-ready surface, coupled with gettering to improve carrier lifetimes, makes these wafers a great alternative to standard Czochralski (Cz) substrates.

The Process of Epitaxial Deposition

Epitaxy creates a crystalline foundation layer on which to build semiconductor devices. This can be accomplished by depositing a thin film of a material engineered to have particular electrical properties or by placing an underlayer in a specific orientation to create either compressive or tensile strain that improves electrical conductivity.
A variety of techniques are used for epitaxial deposition, including vapor phase epitaxy (VPE), molecular beam epitaxy (MBE), and liquid phase epitaxy (LPE). All of these methods use a combination of chemical vapor deposition and thermal expansion to form atomic layers of material.

The growth process is usually conducted in a UHV environment, and all of the elemental sources are kept under a vacuum to prevent contamination, thus making it possible to monitor the atomic-level formation of an interface with an extremely high degree of accuracy.
The image above shows TEM images of Si cap (10 nm)/SiGe blanket and Si buffer (5 nm) multi-stack layers on a P/E wafer grown with wet DHF pre-cleaning followed by H2 bake at 700 deg C. HRXRD was performed to characterize the strained layer, which had a Ge concentration of 32% and an orientation of (011 / 2). Applied’s advanced epi technology allows for highly uniform and precise placement of dopant atoms across the film's surface, along with deficient defect levels and high crystalline quality.

The Benefits of Epitaxial Wafers

Besides being a cost-effective option, epi-ready silicon wafers help manufacturers produce more powerful semiconductor devices. They can be used to make silicon chips that are used in many electronic products, including computers, consumer electronics, telecommunications devices, and even self-driving cars. As a result, the demand for these wafers is expected to increase.

In addition, a key benefit of using these wafers is that they can be used to improve the reliability of IC devices by reducing the amount of crystal-originated particles (COP). Imperfections in polished wafers cause COPs and can cause device failure. Fortunately, by using the Epi process on P/E wafers, manufacturers can avoid these defects and provide superior product performance.

The Epitaxial growth process is a great way to create a layer of material that can be patterned on top of the bare silicon substrate. This process can be used to create a wide range of semiconductor devices, such as transistors, diodes, and photodiodes. The high-quality films that are produced by this method are also very stable and can withstand an extensive range of temperatures.

The global market for compound semiconductor epitaxial wafers is divided into several segments by the end user. These segments include digital economy, industrial and energy & power, defense/security, transport, and consumer electronics.

 

Growing Dual Epi Layers on Substrate

A Semiconductor Device Engineer requested the following quote:

Can you guys grow dual epi layers on 4 inch N+ substrate? Please see below for details. epi ready silicon wafer

UniversityWafer, Inc. Quoted:

We offer:

Item   Qty.   Description
HJ48. 25/50/100   p/n/n+ Epi wafers, 4" (100.0±0.5mm)Ø×420±25µm
Substrate: n-type Si:As[111-4°]±0.5°, Ro=(0.0015-0.0030)Ohmcm,
TTV<5µm, Bow<40µm, Warp<40µm, TIR<6µm,
One-side-polished, back-side etched, 1 SEMI Flat, Edges: rounded,
Backside seal: 17.5±2.5µm Si monolayer by mass transfer (necessary to prevent autodoping),

EPI Layer 1: 20±2µm thick, n-type Si:P, Ro=4.6±0.4Ohmcm,
EPI Layer 2 (top layer): 25.0±2.5µm thick, p-type Si:B, Ro=0.0100±0.0001hmcm,
Overall: SF<10/cm², Slips<0.15 (Edge exclusion 3mm) , LPD≤5 @>20µm, Total LLS≤16@>0.5µm, Haze, foreign matter, scratches, edge chips: all none, Others per SEMI, Sealed in Empak or equivalent cassette.

Reference #260691 for specs and pricing.

Silicon Epi Wafers Sale - Many More Available! Just ask!

6" Epitaxial Silicon Wafers

Item Qty in Stock Substrate EPI Comment
Size Type Res Ωcm Surf. Thick μm Type Res Ωcm
G541 150 6"Øx675μm n- Si:P[100] 0.001-0.002 P/EOx 0.016 n- Si:P 0.32-0.46 n/n+

4" Epitaxial Silicon Wafers

Item Qty in Stock Substrate EPI Comment
Size Type Res Ωcm Surf. Thick μm Type Res Ωcm
D274 6 4"Øx360μm n- Si:Sb[111] 0.005-0.020 P/E 20 n- Si:P 360 - 440 n/n+
E4_151 8 4"Øx400μm p- Si:B[111] 0.01-0.10 P/E 6.5
22±1.5
p- Si:B
p- Si:B
3.6±10%
300±50
P/P/P+
E4_134 7 4"Øx525μm p- Si:B[111] 0.01-0.02 P/E 8.1±1
6.85±0.75
p- Si:B
p- Si:B
4.5±10%
0.75±0.15
P/P/P+
E4_104 6 4"Øx380μm p- Si:B[111] 0.008-0.020 P/EOx 10.5 p- Si:B 570±10% p/p+
E4_22 3 4"Øx440μm p- Si:B[111] 0.008-0.020 P/E 20 p- Si:B 0.15 ±10% P/P+
E4_106 4 4"Øx440μm p- Si:B[111] 0.008-0.020 P/E 20 p- Si:B 0.25±10% P/P+
E4_105 7 4"Øx525μm p- Si:B[111] 0.001-0.005 P/E 20 p- Si:B 175±10% P/P+
E4_26 10 4"Øx440μm p- Si:B[111] 0.008-0.020 P/E 21 p- Si:B 150 ±10% P/P+
E4_107 8 4"Øx380μm p- Si:B[111] 0.008-0.020 P/EOx 23 p- Si:B 200±10% P/P+
E4_108 9 4"Øx380μm p- Si:B[111] 0.008-0.020 P/EOx 23 p- Si:B 80±10% P/P+
E4_42 4 4"Øx440μm p- Si:B[111] 0.008-0.020 P/E 32 p- Si:B 600 ±10% P/P+
E4_109 8 4"Øx440μm p- Si:B[111] 0.01-0.02 P/E 32.5 p- Si:B 100±10% P/P+
E4_21 5 4"Øx380μm p- Si:B[111] 0.008-0.020 P/EOx 40 p- Si:B 550 ±10% P/P+
E4_133 3 4"Øx525μm p- Si:B[111] 0.01-0.02 P/E 14
10
n- Si:P
p- Si:B
2.5±0.3
15
N/P/P+
E4_135 2 4"Øx525μm p- Si:B[111] 0.01-0.02 P/E 14
10
n- Si:P
p- Si:B
2.5±10%
9±10%
n/p/p+
E4_113 8 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 20
10
p- Si:B
n- Si:P
10±1.5
5.5±0.7
P/N/N+
E4_127 5 4"Øx381μm n- Si:As[111] 0.0010-0.0035 P/E 33
10
p- Si:B
n- Si:P
12±10%
4±10%
P/N/N+
E4_147 9 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 33±5
9
p- Si:B
n- Si:P
12±2
4
P/N/N+
E4_128 6 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 37
16.5
p- Si:B
n- Si:P
35±10%
12.5±10%
P/N/N+
E4_124 7 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 45
7±1
p- Si:B
n- Si:P
13±10%
12±10%
P/N/N+
E4_144 6 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 45
7
p- Si:B
n- Si:P
14.5±10%
12±10%
P/N/N+
E4_132 8 4"Øx525μm n- Si:As[111] 0.002-0.005 P/E 88
88
p- Si:B
n- Si:P
80.5±10%
27±10%
P/N/N+
E4_145 7 4"Øx380μm n- Si:As[111] 0.002-0.005 P/E 105
26
p- Si:B
n- Si:P
0.0035±10%
5±10%
P/N/N+
E4_122 5 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 10.15
6.8±0.8
n- Si:P
n- Si:P
3.8±0.5
0.55±0.15
N/N/N+
E4_84 9 4"Øx380μm n- Si:As[111] 0.004-0.008 P/EOx 16.5 n- Si:P 35 ±10% N/N+
E4_143 8 4"Øx508μm n- Si:As[111] 0.002-0.005 P/E 19±1.3
54.5±3.6
n- Si:P
n- Si:P
25±5
4.4
N/N/N+
E4_68 9 4"Øx380μm n- Si:As[111] 0.001-0.005 P/EOx 20 n- Si:P 270 ±10% N/N+
E4_90 8 4"Øx400μm n- Si:As[111] 0.001-0.005 P/E 20 n- Si:P 0.09 ±10% N/N+
E4_10 25 4"Øx400μm n- Si:As[111] 0.001-0.005 P/E 20 n- Si:P 90±10% N/N+
E4_89 9 4"Øx400μm n- Si:As[111] 0.001-0.005 P/E 20 n- Si:P 0.07 ±10% N/N+
E4_91 9 4"Øx400μm n- Si:As[111] 0.001-0.005 P/E 20 n- Si:P 0.13 ±10% N/N+
E4_92 11 4"Øx400μm n- Si:As[111] 0.001-0.005 P/E 20 n- Si:P 0.15 ±10% N/N+
E4_93 7 4"Øx400μm n- Si:As[111] 0.001-0.005 P/E 20 n- Si:P 0.19 ±10% N/N+
E4_30 7 4"Øx525μm n- Si:As[111] 0.001-0.005 P/E 20 n- Si:P 65 ±10% N/N+
E4_116 5 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 20
10
n- Si:P
n- Si:P
7±10%
2±0.4
N/N/N+
E4_69 8 4"Øx380μm n- Si:As[111] 0.001-0.005 P/EOx 21 n- Si:P 150 ±10% N/N+
E4_117 11 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 22.5
28.5
n- Si:P
n- Si:P
12±10%
2±10%
N/N/N+
E4_129 9 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 26
11
n- Si:P
n- Si:P
18±10%
2±10%
N/N/N+
E4_54 9 4"Øx525μm n- Si:As[111] 0.001-0.005 P/E 27 n- Si:P 220 ±10% N/N+
E4_52 15 4"Øx525μm n- Si:As[111] 0.001-0.005 P/E 27.5 n- Si:P >250 N/N+
E4_53 9 4"Øx525μm n- Si:As[111] 0.001-0.005 P/E 28 n- Si:P 165 ±10% N/N+
E4_125 14 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 28
8 - 12
n- Si:P
n- Si:P
11±10%
1 - 3
N/N/N+
E4_120 19 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 28
9 - 11
n- Si:P
n- Si:P
8 - 11
1 - 3
N/N/N+
E4_111 20 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 30
15
5
n- Si:P
n- Si:P
n- Si:P
11±10%
4±10%
1.5±10%
N/N/N/N+
E4_123 10 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 39.5
12
n- Si:P
n- Si:P
29±10%
4±10%
N/N/N+
E4_81 20 4"Øx380μm n- Si:As[111] 0.004-0.008 P/EOx 41.5 n- Si:P >300 ±10% N/N+
E4_77 18 4"Øx380μm n- Si:As[111] 0.004-0.008 P/EOx 41.5 n- Si:P >200 N/N+
E4_17 2 4"Øx380μm n- Si:As[111] 0.004-0.008 P/EOx 43 n- Si:P 600 ±10% N/N+
E4_79 8 4"Øx380μm n- Si:As[111] 0.004-0.008 P/EOx 43 n- Si:P >200 N/N+
E4_16 1 4"Øx380μm n- Si:As[111] 0.004-0.008 P/EOx 43 n- Si:P 340 ±10% N/N+
E4_115 6 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 50
15
n- Si:P
n- Si:P
36±4
5.4±0.7
N/N/N+
E4_24 10 4"Øx525μm n- Si:As[111] 0.001-0.005 P/E 75 n- Si:P 66 ±10% N/N+
E4_59 9 4"Øx525μm n- Si:As[111] 0.001-0.005 P/E 78 n- Si:P 25 ±10% N/N+
E4_5 15 4"Øx525μm n- Si:As[111] 0.001-0.005 P/EOx 78 n- Si:P 20 ±10% N/N+
E4_94 5 4"Øx525μm n- Si:As[111] 0.001-0.005 P/E 80 n- Si:P 17.5 ±10% N/N+
E4_112 4 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 80
10
n- Si:P
n- Si:P
60±10%
2±1
N/N/N+
E4_146 7 4"Øx525μm n- Si:As[111] 0.0010-0.0035 P/E 80
10
n- Si:P
n- Si:P
70±10%
2±1
N/N/N+
E4_137 8 4"Øx525μm n- Si:Sb[111] 0.008-0.020 P/E 22.5
15
p- Si:B
n- Si:P
15±10%
6±0.9
P/N/N+
E4_136 7 4"Øx525μm n- Si:Sb[111] 0.008-0.020 P/E 38
18
p- Si:B
n- Si:P
55±10%
10±10%
P/N/N+
E4_9 4 4"Øx525μm n- Si:Sb[111] 0.005-0.020 P/E 14 n- Si:P 4.25 ±10% N/N+
E4_55 4 4"Øx525μm n- Si:Sb[111] 0.005-0.020 P/E 15 n- Si:P 90 ±10% N/N+
E4_27 10 4"Øx525μm n- Si:Sb[111] 0.005-0.020 P/E 18 n- Si:P 0.25 ±10% N/N+
E4_56 6 4"Øx400μm n- Si:Sb[111] 0.005-0.020 P/E 20 n- Si:P 75 ±10% N/N+
E4_57 8 4"Øx400μm n- Si:Sb[111] 0.005-0.020 P/E 20 n- Si:P 136 ±10% N/N+
E4_58 3 4"Øx400μm n- Si:Sb[111] 0.005-0.020 P/E 20 n- Si:P 101 ±10% N/N+
E4_98 5 4"Øx400μm n- Si:Sb[111] 0.006-0.020 P/E 20 n- Si:P 300±10% N/N+
E4_97 9 4"Øx400μm n- Si:Sb[111] 0.006-0.020 P/E 21 n- Si:P 400±10% N/N+
E4_100 15 4"Øx525μm n- Si:Sb[111] 0.005-0.020 P/E 22.5 n- Si:P 12.5±10% N/N+
E4_2 16 4"Øx400μm n- Si:Sb[111] 0.005-0.020 P/E 25 n- Si:P 0.08 ±10% N/N+
E4_14 2 4"Øx400μm n- Si:Sb[111] 0.005-0.020 P/E 25 n- Si:P 0.04 ±10% N/N+
E4_66 5 4"Øx360μm n- Si:Sb[111] 0.005-0.020 P/E 37.5 n- Si:P 270 ±10% N/N+
E4_95 10 4"Øx400μm n- Si:Sb[111] 0.006-0.020 P/E 37.5 n- Si:P 85±10% N/N+
E4_138 4 4"Øx525μm n- Si:Sb[111] 0.008-0.020 P/E 58
15
5
n- Si:P
n- Si:P
n- Si:P
60±10%
8±10%
3±10%
N/N/N/N+
E4_148 9 4"Øx460μm n- Si:Sb[111] 0.007-0.020 P/E 60
20
n- Si:P
n- Si:P
40.5±4.5
10±2
N/N/N+
E4_60 9 4"Øx525μm n- Si:Sb[111] 0.005-0.020 P/E 60 n- Si:P 60 ±10% N/N+
E4_12 10 4"Øx525μm n- Si:Sb[111] 0.005-0.020 P/E 60 n- Si:P 58.75 ±10% N/N+
E4_19 6 4"Øx525μm n- Si:Sb[111] 0.005-0.020 P/E 70 n- Si:P 60 ±10% N/N+
E4_61 9 4"Øx525μm n- Si:Sb[111] 0.005-0.020 P/E 75 n- Si:P 125 ±10% N/N+
E4_44 6 4"Øx525μm n- Si:Sb[111] 0.005-0.020 P/E 100 n- Si:P 420±10% N/N+

3" Epitaxial Silicon Wafers

Item Qty in Stock Substrate EPI Comment
Size Type Res Ωcm Surf. Thick μm Type Res Ωcm
K827 4 3"Øx508μm p- Si:B[111] 0.008-0.020 P/E 12.5
140±10
p- Si:B
n- Si:P
2.35
33.60
p+
8611 50 3"Øx381μm n- Si:As[111-4°] 0.001-0.005 P/E 5.5 n- Si:P 0.31 - 0.33 n/n+
F667 120 3"Øx525μm n- Si:P[111] 0.001-0.005 P/E 4.5 n- Si:P 1.1 - 1.4 n/n+, Sealed in cassettes of 24 wafers
E3_32 18 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 5.5 n- Si:P 1.06±10% N/N+
E3_40 5 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 11 n- Si:P 17.5±10% N/N+
E3_2 9 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 12 n- Si:P 16±10% N/N+
E3_54 8 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 12 n- Si:P 2.1±10% N/N+
E3_55 12 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 12 n- Si:P 1.7±10% N/N+
E3_24 18 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 12 n- Si:P 1.3±10% N/N+
E3_38 15 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 12 n- Si:P 1.3±10% N/N+
E3_62 14 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 12 n- Si:P 1.8±10% N/N+
E3_30 15 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 13 n- Si:P 1.35±10% N/N+
E3_48 9 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 15.5 n- Si:P 9.5±10% N/N+
E3_22 12 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 15.5 n- Si:P 9.5±10% N/N+
E3_42 4 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 18 n- Si:P 0.05±10% N/N+
E3_3 20 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 22 n- Si:P 4.8±10% N/N+
E3_5 18 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 22 n- Si:P 4±10% N/N+
E3_27 5 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 22 n- Si:P 4±10% N/N+
E3_63 20 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 28 n- Si:P 16.5±10% N/N+
E3_17 6 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 28.5 n- Si:P 4±10% N/N+
E3_25 9 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 28.5 n- Si:P 20±10% N/N+
E3_53 8 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 30 n- Si:P 4.5±10% N/N+
E3_15 15 3"Øx355μm n- Si:As[111] 0.001-0.005 P/E 34 n- Si:P 9.5±10% N/N+
E3_16 15 3"Øx355μm n- Si:As[111] 0.001-0.005 P/E 34 n- Si:P 12±10% N/N+
E3_51 8 3"Øx355μm n- Si:As[111] 0.001-0.005 P/E 34 n- Si:P 11±10% N/N+
E3_4 9 3"Øx355μm n- Si:As[111] 0.001-0.005 P/E 36 n- Si:P 4±10% N/N+
E3_23 5 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 37.5 n- Si:P 0.6±10% N/N+
E3_1 20 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 41 n- Si:P 25±10% N/N+
E3_41 9 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 42 n- Si:P 20.5±10% N/N+
E3_19 18 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 42.5 n- Si:P 17±10% N/N+
E3_14 8 3"Øx355μm n- Si:As[111] 0.001-0.005 P/E 52.5 n- Si:P 12.5±10% N/N+
E3_56 19 3"Øx381μm n- Si:As[111] 0.001-0.005 P/E 56 n- Si:P 12±10% N/N+
E3_45 8 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 70 n- Si:P 73±10% N/N+
E3_33 10 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 72 n- Si:P 12.5±10% N/N+
E3_7 19 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 73 n- Si:P 84±10% N/N+
E3_44 8 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 75 n- Si:P 13±10% N/N+
E3_49 18 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 75 n- Si:P 11±10% N/N+
E3_12 8 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 80 n- Si:P 12±10% N/N+
E3_10 15 3"Øx375μm n- Si:As[111] 0.001-0.005 P/E 85 n- Si:P 22.5 ±10% N/N+
E3_34 10 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 85 n- Si:P 19.5±10% N/N+
E3_20 20 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 85 n- Si:P 66±10% N/N+
E3_59 18 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 90
18
n- Si:P
n- Si:P
41±10%
5±10%
N/N/N+
E3_43 18 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 96 n- Si:P 30±10% N/N+
E3_11 19 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 100 n- Si:P 16 ±10% N/N+
E3_13 2 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 100 n- Si:P 12±10% N/N+
E3_21 10 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 100 n- Si:P 20±10% N/N+
E3_8 5 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 100 n- Si:P 21±10% N/N+
E3_37 14 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 135 n- Si:P 35±10% N/N+
E3_39 4 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 140 n- Si:P 31±10% N/N+
E3_29 10 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 145 n- Si:P 38±10% N/N+
E3_26 18 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 145 n- Si:P 25±10% N/N+
E3_9 3 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 150 n- Si:P 44±10% N/N+
E3_28 15 3"Øx508μm n- Si:As[111] 0.001-0.005 P/E 158 n- Si:P 67±10% N/N+
E3_31 10 3"Øx381μm n- Si:Sb[111] 0.005-0.020 P/E 8 n- Si:P 0.63±10% N/N+
E3_35 15 3"Øx381μm n- Si:Sb[111] 0.005-0.020 P/E 22.5 n- Si:P 0.07±10% N/N+
E3_6 12 3"Øx381μm n- Si:Sb[111] 0.005-0.020 P/E 30 n- Si:P 6.75±10% N/N+
E3_64 10 3"Øx330μm n- Si:Sb[111] 0.005-0.018 P/E 75
25
n- Si:P
n- Si:P
40±10%
2.5±10%
N/N/N+

 


100mm P/B (100) 525μm 0.008-0.020 ohm-cm DSP
100±10 N/PHn 40 - 60 ohm-cm n/p+, Back-side polished after Epi deposition
certificate available

100mm P/B (111) 400μm .01-0.10 ohm-cm SSP
6.522±1.5 p- Si:B p- Si:B .6±10% 300±50 P/P/P+

76.2mm N/As (111) 0.001-0.005 ohm-cm SSP
75 n- Si:P 11±10% N/N+